Electronic Structure of Ti₃SiC₂

Alexander L. Ivanovsky,* Dmitry L. Novikov[†] and Gennady P. Shveikin

Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620219 Ekaterinburg, Russian Federation. Fax: +7 3432 444495

Self-consistent calculations of the band structure, total and local densities of states and energy spectrum parameters of the ordered ternary phase Ti_3SiC_2 have been carried out using the full-potential LMTO method.

The ternary titanium carbosilicide Ti₃SiC₂ possesses a unique set of properties (high melting point, resistance to aggressive environments and to high-temperature oxidation along with high plasticity) and therefore has recently attracted much attention, in particular, as a promising material for producing novel construction ceramics.¹⁻⁶

This paper presents the results of calculations of the band structure and electronic energy spectrum parameters of titanium carbosilicide performed by self-consistent full-potential LMTO method, the formalism of which is described in ref. 7.

The crystal structure of Ti_3SiC_2 has been studied in sufficient detail. According to ref. 8, Ti_3SiC_2 has a hexagonal structure (space group D_{6h}^4 - $P6_3$ /mmc) with unit cell (containing 6Ti, 2Si and 4C atoms) parameters a=3.066 and c=17.646 A. A fragment of Ti_3SiC_2 structure is depicted in Fig. 1. It is clear that metal atoms occupy two structurally non-equivalent positions, one of which (Ti_1 , 4 atoms in the unit cell) does have Si atoms as near neighbours while the other (Ti_2 , 2 atoms in the unit cell) does not have Si atoms as nearest neighbours. The following interatomic distances (in Å) have been used in the calculations:

Ti_1	Ti_1	(3.068)	Ti_2	Ti_2	(3.068)
	Ti_2	(2.971)		Ti_1	(2.971)
	Si	(2.696)		C	(2.135)
	C	(2.135)		C	(2.135)
C	Ti_1	(2.135)	Si	Si	(3.068)
	Ti_2	(2.135)		Ti_1	(2.696)

The computations have been performed in full basis, the radii of muffin-tin (MT) spheres being 1.92 (Ti₁, Ti₂), 2.89 (Si) and 2.14 (C) Å.

Fig. 2 gives the energy band structure of hexagonal titanium carbosilicide. The valence band dispersion curves may be divided into two basic groups: the low-energy group is composed mainly of metalloid states of s-symmetry and the next group of bands contains predominantly (Si,C)p and Ti s,d states. Attention is drawn to the fact that there is no direct overlap of C and Si s bands (the four lower and the two next bands, Fig. 2) and that the energy dispersion of the Si-like bands is much greater. This may be the result of participation of silicon atoms in different bond types (Si–Ti and Si–Si) whereas carbon atoms are located in a regular octahedral coordination (CTi₆) and take part only in Ti–C interactions. The energy gap between s- and p-d-like bands is very small: the indirect gap is 0.12 eV and the direct gap (in M and L points) is 0.91 and 1.04 eV, respectively.

It follows from the total and local densities of states (TDOS, LDOS) given in Fig. 3 that, as distinct from binary titanium carbide, 11 in the energy spectrum of the carbosilicide the Fermi level coincides with the peak of the titanium density of d-states $[N(E_{\rm F})=4.76$ states eV⁻¹]. This circumstance should determine the metal-like properties of the Ti₃SiC₂ phase. The contributions to $N(E_{\rm F})$ from the states of the structurally nonequivalent titanium atoms in which the decisive role is played by Ti₁ states $[N(E_{\rm F}:{\rm Ti}_1)/N(E_{\rm F}:{\rm Ti}_2)\sim 3.76]$ turn out to be considerably different as well.

The shape and energy distribution of the Ti₁ and Ti₂ LDOS also exhibit dissimilarity, Fig. 3. While for Ti₁ atoms

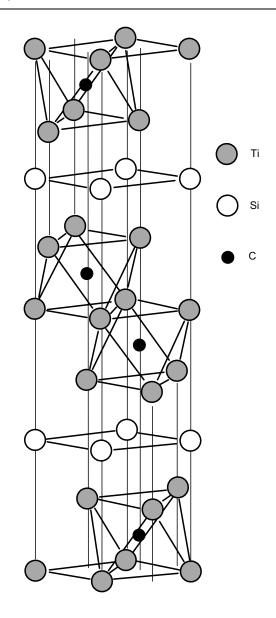


Fig. 1 Fragment of the crystal structure of Ti₃SiC₂.

surrounded both by Si and C atoms the LDOS contains two maxima coinciding in energy with C,Si-LDOS peaks, the valence states of Ti₂ atoms containing in the first coordination sphere only carbon atoms are shifted downwards on the energy scale (relative to the Ti₁ LDOS) and the LDOS shape of the Ti₂ centres has much in common with that of the C2p centres.

The charges in the MT spheres $(9.386 - \text{Ti}_1; 9.359 - \text{Ti}_2; 4.304 - \text{Si}; 4.384e - \text{C})$ enable us to estimate the effective atomic charges $(+0.614 - \text{Ti}_1; +0.641 - \text{Ti}_2; -0.304 - \text{Si}; -0.384e - \text{C})$. The values obtained are indicative of the partial charge transport (in the direction $\text{Ti}_{1,2} \rightarrow \text{Si},\text{C}$) which provides for the ionic component of the general system of chemical bonding to the carbosilicide.

[†] Present address: Department of Physics and Astronomy, Northwestern University, Evanston, Illinois, IL 60208-3112, USA.

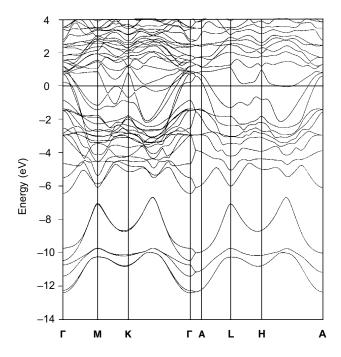


Fig. 2 Band structure of Ti₃SiC₂.

On the whole it is possible to assert that a complicated combined ionic–covalent–metallic type of chemical bonding is realized in Ti₃SiC₂ which is due to the following factors: charge polarization between metal and metalloid atoms, hybridization of valence states (Ti₁3d-Si3p, Ti₁3d-C2p, Ti₂3d-C2p, Si3p-Si3p) and collectivization of near-Fermi titanium d-states (mainly of Ti₁ atoms). A more detailed consideration of the chemical bonding in Ti₃SiC₂, its anisotropy and influence on the carbosilicide properties will be proposed in ref. 12.

References

- 1 T. Goto and T. Hirai, Mater. Res. Bull., 1987, 22, 1195.
- 2 R. Pampuch, J. Lis, L. Stobierski and M. Tymkiewicz, J. Eur. Cer. Soc., 1989, 5, 283.
- 3 B. Gottselig, E. Gyarmati, A. Naoumidis and H. Nickel, *J. Eur. Cer. Soc.*, 1990, **6**, 153.
- 4 R. Fella and H. Holleck, Mat. Sci. Engin., 1991, A140, 676.
- 5 E. Gyarmati, P. Ahladas, A. Naoumidis and H. Nickel, in *Proc. 13th Int. Plansee Seminar*, eds. H. Bildstein and R. Eck, Metallwerk Plansee, Reutte, 1993, 2, 631.
- 6 J. Lis, R. Pampuch, J. Piekarczyk and L. Stobierski, Cer. International, 1993, 19, 219.

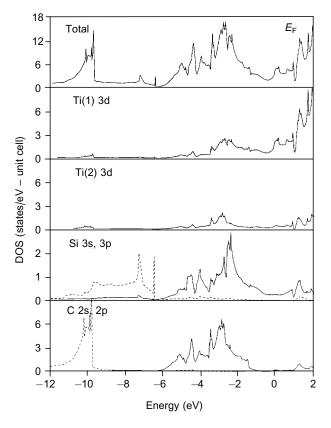


Fig. 3 Total and local densities of states of Ti_3SiC_2 . Given are s (dashed line) and p (solid line) DOS of nonmetals and d states of titanium. For designations Ti_1 and Ti_2 , see the text.

- 7 M. Methfessel, *Phys. Rev.*, 1988, **B38**, 1537; M. Methfessel and M. Sheffler, *Physica*, 1990, **B163**, 470.
- 8 W. Jeitschko and H. Nowotny, Mh. Chem., 1967, 98, 329.
- J. J. Nickl, K. K. Schweitzer and P. Luxenberg, J. Less-Common Met., 1972, 26, 335.
- 10 B. Gottselig, E. Gyarmati, A. Naoumidis and H. Nickel, Jul.-Report N 2288, 1989.
- 11 V. A. Gubanov, A. L. Ivanovsky and V. P. Zhukov, Electronic Properties of Refractory Carbides and Nitrides, Cambridge University Press, Cambridge, 1994.
- 12 D. L. Novikov and A. L. Ivanovsky, *J. Less-Common Met.*, in press.

Received: Moscow, 16th February 1995 Cambridge, 13th March 1995; Com. 5/01022E